Space
The James Webb telescope found six galaxies that may be too hefty for their age
Published
1 month agoon
By
ironity
The James Webb Space Telescope’s first peek at the distant universe unveiled galaxies that appear too big to exist.
Six galaxies that formed in the universe’s first 700 million years seem to be up to 100 times more massive than standard cosmological theories predict, astronomer Ivo Labbé and colleagues report February 22 in Nature. “Adding up the stars in those galaxies, it would exceed the total amount of mass available in the universe at that time,” says Labbé, of the Swinburne University of Technology in Melbourne, Australia. “So you know that something is afoot.”
Science News headlines, in your inbox
Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.
The telescope, also called JWST, released its first view of the early cosmos in July 2022 (SN: 7/11/22). Within days, Labbé and his colleagues had spotted about a dozen objects that looked particularly bright and red, a sign that they could be massive and far away.
“They stand out immediately, you see them as soon as you look at these images,” says astrophysicist Erica Nelson of the University of Colorado Boulder.
Measuring the amount of light each object emits in various wavelengths can give astronomers an idea of how far away each galaxy is, and how many stars it must have to emit all that light. Six of the objects that Nelson, Labbé and colleagues identified look like their light comes from no later than about 700 million years after the Big Bang. Those galaxies appear to hold up to 10 billion times the mass of our sun in stars. One of them might contain the mass of 100 billion suns.
“You shouldn’t have had time to make things that have as many stars as the Milky Way that fast,” Nelson says. Our galaxy contains about 60 billion suns’ worth of stars — and it’s had more than 13 billion years to grow them. “It’s just crazy that these things seem to exist.”
In the standard theories of cosmology, matter in the universe clumped together slowly, with small structures gradually merging to form larger ones. “If there are all these massive galaxies at early times, that’s just not happening,” Nelson says.
One possible explanation is that there’s another, unknown way to form galaxies, Labbé says. “It seems like there’s a channel that’s a fast track, and the fast track creates monsters.”
But it could also be that some of these galaxies host supermassive black holes in their cores, says astronomer Emma Curtis-Lake of the University of Hertfordshire in England, who was not part of the new study. What looks like starlight could instead be light from the gas and dust those black holes are devouring. JWST has already seen a candidate for an active supermassive black hole even earlier in the universe’s history than these galaxies are, she says, so it’s not impossible.
Subscribe to Science News
Get great science journalism, from the most trusted source, delivered to your doorstep.
Finding a lot of supermassive black holes at such an early era would also be challenging to explain (SN: 3/16/18). But it wouldn’t require rewriting the standard model of cosmology the way extra-massive galaxies would.
“The formation and growth of black holes at these early times is really not well understood,” she says. “There’s not a tension with cosmology there, just new physics to be understood of how they can form and grow, and we just never had the data before.”
To know for sure what these distant objects are, Curtis-Lake says, astronomers need to confirm the galaxies’ distances and masses using spectra, more precise measurements of the galaxies’ light across many wavelengths (SN: 12/16/22).
JWST has taken spectra for a few of these galaxies already, and more should be coming, Labbé says. “With luck, a year from now, we’ll know a lot more.”
Share this:
- Click to share on Twitter (Opens in new window)
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to share on Reddit (Opens in new window)
- Click to share on Tumblr (Opens in new window)
- Click to share on Pinterest (Opens in new window)
- Click to share on Pocket (Opens in new window)
- Click to share on Telegram (Opens in new window)
- Click to share on WhatsApp (Opens in new window)
- Click to share on Skype (Opens in new window)
- Click to email a link to a friend (Opens in new window)
Related
You may like
-
Baby Jupiter glowed so brightly it might have desiccated its moon
-
A neutron star collision may have emitted a fast radio burst
-
TRAPPIST-1’s biggest planet doesn’t have much, or any, atmosphere
-
Scientists Explain Why Jupiter’s and Saturn’s Icy Moons Have Extreme Radar Properties | Sci.News
-
Here’s a peek into the mathematics of black holes
-
Scientists Find Vitamin B3 and Uracil in Samples from Asteroid Ryugu | Sci.News
Space
Baby Jupiter glowed so brightly it might have desiccated its moon
Published
13 hours agoon
March 28, 2023By
ironity
THE WOODLANDS, TEXAS — A young, ultrabright Jupiter may have desiccated its now hellish moon Io. The planet’s bygone brilliance could have also vaporized water on Europa and Ganymede, planetary scientist Carver Bierson reported March 17 at the Lunar and Planetary Science Conference. If true, the findings could help researchers narrow the search for icy exomoons by eliminating unlikely orbits.
Jupiter is among the brightest specks in our night sky. But past studies have indicated that during its infancy, Jupiter was far more luminous. “About 10 thousand times more luminous,” said Bierson, of Arizona State University in Tempe.
Science News headlines, in your inbox
Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.
That radiance would have been inescapable for the giant planet’s moons, the largest of which are volcanic Io, ice-shelled Europa, aurora-cowled Ganymede and crater-laden Callisto (SN: 12/22/22, SN: 4/19/22, SN: 3/12/15). The constitutions of these four bodies obey a trend: The more distant the moon from Jupiter, the more ice-rich its body is.
Bierson and his colleagues hypothesized this pattern was a legacy of Jupiter’s past radiance. The team used computers to simulate how an infant Jupiter may have warmed its moons, starting with Io, the closest of the four. During its first few million years, Io’s surface temperature may have exceeded 26° Celsius under Jupiter’s glow, Bierson said. “That’s Earthlike temperatures.”
Any ice present on Io at that time, roughly 4.5 billion years ago, probably would have melted into an ocean. That water would have progressively evaporated into an atmosphere. And that atmosphere, hardly restrained by the moon’s weak gravity, would have readily escaped into space. In just a few million years, Io could have lost as much water as Ganymede may hold today, which may be more than 25 times the amount in Earth’s oceans.
A coruscant Jupiter probably didn’t remove significant amounts of ice from Europa or Ganymede, the researchers found, unless Jupiter was brighter than simulated or the moons orbited closer than they do today.
The findings suggest that icy exomoons probably don’t orbit all that close to massive planets.
Share this:
- Click to share on Twitter (Opens in new window)
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to share on Reddit (Opens in new window)
- Click to share on Tumblr (Opens in new window)
- Click to share on Pinterest (Opens in new window)
- Click to share on Pocket (Opens in new window)
- Click to share on Telegram (Opens in new window)
- Click to share on WhatsApp (Opens in new window)
- Click to share on Skype (Opens in new window)
- Click to email a link to a friend (Opens in new window)
Related
Space
TRAPPIST-1’s biggest planet doesn’t have much, or any, atmosphere
Published
1 day agoon
March 27, 2023By
ironity
A rocky planet that circles a small star nearly 40 light-years from Earth is hot and has little or no atmosphere, a new study suggests. The finding raises questions about the possibility of atmospheres on the other orbs in the planetary system.
At the center of the system is the red dwarf star dubbed TRAPPIST-1; it hosts seven known planets with masses ranging from 0.3 to 1.4 times Earth’s, a few of which could hold liquid water (SN: 2/22/17; 3/19/18). The largest, TRAPPIST-1b, is the closest to its parent star and receives about four times the radiation Earth receives from the sun, says Thomas Greene, an astrobiologist at NASA’s Ames Research Center at Moffett Field, Calif.
Science News headlines, in your inbox
Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.
Like all other planets in the system, TRAPPIST-1b is tidally locked, meaning that one side of the planet always faces the star, and one side looks away. Calculations suggest that if the stellar energy falling on TRAPPIST-1b were distributed around the planet — by an atmosphere, for example — and then reradiated equally in all directions, the planet’s surface temperature would be around 120° Celsius.
But the dayside temperature of the planet is actually around 230° C, Greene and colleagues report online March 27 in Nature. That, in turn, suggests that there’s little or no atmosphere to carry heat from the perpetually sunlit side of the planet to the dark side, the team argues.
To take TRAPPIST-1b’s temperature, Greene and his colleagues used the James Webb Space Telescope to observe the planet in a narrow band of infrared wavelengths five times in 2022. Because the observations were made just before and after the planet dodged behind its parent star, astronomers could see the fully lit face of the planet, Greene says.
The team’s results are “the first ‘deep dive’ look at this planet,” says Knicole Colon, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md, who was not involved with the study. “With every observation, we expect to learn something new,” she adds.
Astronomers have long suggested that planets around red dwarf stars might not be able to hold onto their atmospheres, largely because such stars’ frequent and high-energy flares would blast away any gaseous shroud they might have during their early years (SN: 12/20/22). Yet there are some scenarios in which such flares could heat up a planet’s surface and drive volcanism that, in turn, yields gases that could help form a new atmosphere.
“To be totally sure that this planet has no atmosphere, we need many more measurements,” says Michaël Gillon, an astrophysicist at the University of Liège in Belgium who was not part of the new study. It’s possible that when observed at a wider variety of wavelengths and from other angles, the planet could show signs of a gaseous shroud and thus possibly hints of volcanism.
Either way, says Laura Kriedberg, an astronomer at the Max Planck Institute for Astronomy in Heidelberg, Germany, who also did not participate in the study, the new result “definitely motivates detailed study of the cooler planets in the system, to see if the same is true of them.”
Share this:
- Click to share on Twitter (Opens in new window)
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to share on Reddit (Opens in new window)
- Click to share on Tumblr (Opens in new window)
- Click to share on Pinterest (Opens in new window)
- Click to share on Pocket (Opens in new window)
- Click to share on Telegram (Opens in new window)
- Click to share on WhatsApp (Opens in new window)
- Click to share on Skype (Opens in new window)
- Click to email a link to a friend (Opens in new window)
Related
Space
A neutron star collision may have emitted a fast radio burst
Published
1 day agoon
March 27, 2023By
ironity
A neutron star pileup may have emitted two different kinds of cosmic signals: ripples in spacetime known as gravitational waves and a brief blip of energy called a fast radio burst.
One of the three detectors that make up the gravitational wave observatory LIGO picked up a signal from a cosmic collision on April 25, 2019. About 2.5 hours later, a fast radio burst detector picked up a signal from the same region of sky, researchers report March 27 in Nature Astronomy.
Science News headlines, in your inbox
Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.
If strengthened by further observations, the finding could bolster the theory that mysterious fast radio bursts have multiple origins — and neutron star mergers are one of them.
“We’re 99.5 percent sure” the two signals came from the same event, says astrophysicist Alexandra Moroianu, who spotted the merger and its aftermath while at the University of Western Australia in Perth. “We want to be 99.999 percent sure.”
Unfortunately, LIGO’s two other detectors didn’t catch the signal, so it’s impossible to precisely triangulate its location. “Even though it’s not a concrete, bang-on observation for something that’s been theorized for a decade, it’s the first evidence we’ve got,” Moroianu says. “If this is true … it’s going to be a big boom in fast radio burst science.”
Mysterious radio bursts
Astronomers have spotted more than 600 fast radio bursts, or FRBs, since 2007. Despite their frequency, the causes remain a mystery. One leading candidate is a highly magnetized neutron star called a magnetar, which could be left behind after a massive star explodes (SN: 6/4/20). But some FRBs appear to repeat, while others are apparent one-off events, suggesting that there’s more than one way to produce them (SN: 2/7/20).
Theorists have wondered if a collision between two neutron stars could spark a singular FRB, before the wreckage from the collision produces a black hole. Such a smashup should emit gravitational waves, too (SN: 10/16/17).
Moroianu and colleagues searched archived data from LIGO and the Canadian Hydrogen Intensity Mapping Experiment, or CHIME, a fast radio burst detector in British Columbia, to see if any of their signals lined up. The team found one candidate pairing: GW190425 and FRB20190425A.
Subscribe to Science News
Get great science journalism, from the most trusted source, delivered to your doorstep.
Even though the gravitational wave was picked up only by the LIGO detector in Livingston, La., the team spotted other suggestive signs that the signals were related. The FRB and the gravitational waves came from the same distance, about 370 million light-years from Earth. The gravitational waves were from the only neutron star merger LIGO spotted in that observing run, and the FRB was particularly bright. There may even have been a burst of gamma rays at the same time, according to satellite data — another aftereffect of a neutron star merger.
“Everything points at this being a very interesting combination of signals,” Moroianu says. She says it’s like watching a crime drama on TV: “You have so much evidence that anyone watching the TV show would be like, ‘Oh, I think he did it.’ But it’s not enough to convince the court.”
Neutron star secrets
Despite the uncertainty, the finding has exciting implications, says astrophysicist Alessandra Corsi of Texas Tech University in Lubbock. One is the possibility that two neutron stars could merge into a single, extra-massive neutron star without immediately collapsing into a black hole. “There’s this fuzzy dividing line between what’s a neutron star and what’s a black hole,” says Corsi, who was not involved in the new work.
In 2013, astrophysicist Bing Zhang of the University of Nevada, Las Vegas suggested that a neutron star smashup could create an extra-massive neutron star that wobbles on the edge of stability for a few hours before collapsing into a black hole. In that case, the resulting FRB would be delayed — just like in the 2019 case.
The most massive neutron star yet observed is about 2.35 times the mass of the sun, but theorists think they could grow to be around three times the mass of the sun without collapsing (SN: 7/22/22). The neutron star that could have resulted from the collision in 2019 would have been 3.4 solar masses, Moroianu and colleagues calculate.
“Something like this, especially if it’s confirmed with more observations, it would definitely tell us something about how neutron matter behaves,” Corsi says. “The nice thing about this is we have hopes of testing this in the future.”
The next LIGO run is expected to start in May. Corsi is optimistic that more coincidences between gravitational waves and FRBs will show up, now that researchers know to look for them. “There should be a bright future ahead of us,” she says.
Share this:
- Click to share on Twitter (Opens in new window)
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to share on Reddit (Opens in new window)
- Click to share on Tumblr (Opens in new window)
- Click to share on Pinterest (Opens in new window)
- Click to share on Pocket (Opens in new window)
- Click to share on Telegram (Opens in new window)
- Click to share on WhatsApp (Opens in new window)
- Click to share on Skype (Opens in new window)
- Click to email a link to a friend (Opens in new window)
Related

Binance Crypto Withdrawals Spike Before CFTC Accusations

Google’s failure to preserve employee messages in Epic antitrust case merits sanctions, judge says

Binance faces investor backlash and Bitcoin withdrawals following CFTC lawsuit

Walmart-owned Sam’s Club plans to open about 30 new stores over next five years

22/7 Project’s Reina Miyase Graduates From Franchise

NBUniversal expects Peacock losses to peak this year as streamer slowly adds subscribers

Watch: Bride Arrives At Wedding Venue In Madhya Pradesh Driving Tractor

In September 2022, ‘The Lord of the Rings: Gollum’ will be released for PC, PS5, and Xbox Series X.

Dhaakad Day 1 Box Office Report: Kangana Ranaut’s film debuts poorly in front of Bhool Bhulaiyaa 2 by Kartik Aaryan.
Trending
-
Business2 months ago
Walmart-owned Sam’s Club plans to open about 30 new stores over next five years
-
Anime & Manga2 months ago
22/7 Project’s Reina Miyase Graduates From Franchise
-
Business2 months ago
NBUniversal expects Peacock losses to peak this year as streamer slowly adds subscribers
-
Odisha News2 months ago
Know the 2023 Padma Shri awardees from Odisha
-
Politics2 months ago
Congress leaders slam Punjab government for not granting R-Day remission to Navjot Singh Sidhu
-
Odisha News2 months ago
Hockey World Cup 2023: India thump listless Japan
-
Anime & Manga2 months ago
Compile Heart Teases New Hyperdimension Neptunia Shooting Game
-
Fashion2 months ago
Aelis Couture Spring 2023
You must be logged in to post a comment Login
You must log in to post a comment.